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The Lifshitz-Slyozov-Wagner theory of Ostwald ripening describes the asymptotic (t→`) diffusive growth
of the condensate in a supersaturated solution. In the present work this theory is extended to a semi-infinite
system where droplets of the condensate exist in the bulk as well as on the boundary wall. Both types of
droplets interact with each other via the bulk diffusion field. We focus on the implications of this interaction for
the growth of surface droplets which in the partial-wetting regime are spherical caps. It turns out that these
droplets show a qualitatively different behavior for contact angles bigger or less thanp/2. In the former case
the droplets may initially grow but eventually shrink until the boundary wall becomes completely dry. The
latter case is dominated by droplets which grow and eventually cover the whole wall. Within our model the
growth rate of droplets with an arbitrary contact angle is calculated exactly.@S1063-651X~96!02312-4#

PACS number~s!: 68.45.Gd; 64.60.Qb

Lifshitz, Slyozov, and independently Wagner have estab-
lished a theory for the precipitation of the condensate in a
supersaturated solution@1#. They considered an unbounded
system in which nuclei of the condensate are formed by fluc-
tuations. Supercritical nuclei then grow via diffusion of the
molecules in the solution. For a small degree of supersatura-
tion the number density of droplets is small, and conse-
quently a single-droplet picture can be used. The growth of
the supercritical droplets reduces the supersaturation~conser-
vation of matter! and in this way leads to an increase of the
critical radius. It then happens that small supercritical drop-
lets can get surpassed by the critical radius, i.e., they become
subcritical and eventually die out, so that large droplets grow
at the expense of the small ones. The main results of this
theory are the asymptotic time dependence of the critical
radiusacr}t

1/3, the growth rate of supercritical droplets, and
the late-time distribution of droplets.

In the present work the Lifshitz-Slyozov-Wagner theory
is extended to semi-infinite systems, where in a supersatu-
rated state droplets of the condensate nucleate in the bulk as
well as on the boundary wall. The growth properties of both
types of droplets is determined by their mutual interaction
via the bulk diffusion field. In the following we are interested
in the effect of this interaction on the growth behavior of the
surface droplets. This situation is different from the one en-
countered in the discussion of breath figures@2#. There the
growth of surface droplets is due to a constant particle flow
towards the wall combined with a two-dimensional diffusion
on the wall.

In the physical situation that we address the diffusive ap-
proach to thermal equilibrium is considered at constant tem-
perature in the partial wetting or dewetting regime of the
system@3#. In addition we assume that the relaxation pro-
cesses driven by the surface tension of the droplets are fast
compared to the bulk diffusion process. Then droplets on the
wall will always have the form of a spherical cap with a
time-dependent radiusa(t) but a constant contact angleu,

obeying Young’s relation. Due to mass conservation the con-
densate will coexist with the solvent in the eventual equilib-
rium state.

A basic ingredient of the Lifshitz-Slyozov theory is the
equation of motion for the radius of a spherical bulk droplet,

da

dt
5D@c`2cs~a!#

1

a
, ~1!

whereD means the diffusion constant of the condensate mol-
ecules in the solution,c`(t) their volume concentration at
infinity, and cs„a(t)… the equilibrium concentration close to
the droplet surface. Due to mass conservationc`(t) de-
creases during the process of precipitation. The concentra-
tion cs(a) is given by the Gibbs-Thomson relation

cs~a!5c0S 11
2L

a D , ~2!

wherec0[c`(`) is the equilibrium concentration on a pla-
nar surface andL is a capillary length.

In the derivation of~1! it has been assumed that the con-
centration field c(x,t) adiabatically follows the droplet
growth and accordingly obeys the Laplace equationDc50
with Dirichlet boundary conditionsc` and cs(a). This al-
lows us to understand Eq.~1! in terms of an electrostatic
analogy~apparently already observed by Maxwell, see Ref.
@4#!, where the droplet surface is considered as the electrode
of a capacitor. ThenDc(x) can be identified with the electric
potential, and the diffusion fluxD]'c(x) through the droplet
surface with the surface charge density multiplied by 4p.
Integration of the latter quantity over the droplet surface
shows that the growth rate of the droplet volume corresponds
to the droplet charge. Therefore, Eq.~1!, after multiplication
with a2/3, resembles the relationQ5CU between the charge
Q51/3(da3/dt), the capacity C5a, and the voltage
U5D@c`2cs(a)#.

The case of a growing surface droplet on the boundary
wall of the system can be treated in a similar way@4#. One
now has to determinec(x) from the Laplace equation with
Dirichlet conditionsc5c` at infinity, c5cs(a) at the droplet*Electronic address: burghaus@uni-duesseldorf.de
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surface, and the additional Neumann condition]'c50 along
the boundary wall representing the condition of zero diffu-
sion flux into the wall. This problem can be solved by the
method of mirror charges which automatically takes care of
the Neumann condition~see Fig. 1!. Then, in the above ar-
gument one has to replace the volumeV and the capacity
C of the sphere by the corresponding quantitiesṼ, C̃ of the
lens in Fig. 1. As a result one finds the equation of motion
@4#

da

dt
5kD@c`2cs~a!#

1

a
, ~3!

where

k5
C̃

C

]V/]a

]Ṽ/]a
. ~4!

Explicitly

Ṽ~a,u!5 2
3p@12cos~u!#2@21cos~u!#a3 ~5!

and

C̃~a,u!5a
sin~u!

2~p2u!H p28(
m51

`

sin2Smp

2 D
3FcSm1

1

2D 2cS mp

2~p2u!
1
1

2D
1 ln S p

2~p2u!D G J , ~6!

with c(a) meaning the logarithmic derivative of Euler’s
function @5#. These expressions reduce toV and C for
u5p/2, in agreement with the fact that the lens of Fig. 1
then becomes a sphere. As a consequencek is a function of
u only, with k(u5p/2)51 ~see Fig. 2!. Therefore, the
growth properties of surface droplets with a contact angle
u5p/2 are identical to those of the corresponding bulk drop-
lets. In terms of the critical radius

acr~ t !5
2Lc0

c`~ t !2c0
. ~7!

Equation~3! can be rewritten in the form

da

dt
5
2LkDc0

a
@acr~ t !

212a~ t !21#, ~8!

which at a5acr shows a transition from a shrinking to a
growing droplet. The critical radiusacr is independent ofu
and therefore identical to that of bulk droplets. Moreover, the
time dependence ofc`(t), and consequently ofacr(t), is the
same as in an unbounded system because in the thermody-
namic limit the contribution of the droplets far from the wall
dominates.

Following the procedure in the Lifshitz-Slyozov ap-
proach, Eq.~3! now is rewritten in terms of the dimension-
less quantitiest53 lnacr(t)/acr(0), u(t)5a(t)/acr(t) and
g56DLc0 /dtacr

3(t) as

du3

dt
5gk~u!~u21!2u3. ~9!

The crucial idea behind this transformation is the observation
that g(t) approaches a fixed point valueg0527/4 for
t→` which via the definition ofg implies the asymptotic
behavioracr(t)}t

1/3.
In the bulk case (k51) the special valueg0 corresponds

to the situation shown in Figure 3~b! where the arrows indi-
cate the behavior of the functionu(t). Figures 3~a! and 3~c!
describe an unlimited shrinking or growth of droplets which
in the bulk case both contradict mass conservation. Accord-
ingly only the limiting behaviorg(t)→g0 from below is
admissible fork51 @1#.

Since due to its definitiong(t) is the same function for
bulk and for surface droplets,g can be replaced byg0 in Eq.
~9!. Then Figs. 3~a! and 3~c! correspond tok(u),1 and
k(u).1, i.e., to surface droplets with a contact angle
u.p/2 andu,p/2, respectively. This time, these cases are

FIG. 1. The spherical cap at the boundary wall and its mirror
image. FIG. 2. Plot of the functionk(u).

FIG. 3. Plot of Eq.~ 9!: ~a! gk,g0; ~b! gk5g0; ~c! gk.g0.
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not in conflict with mass conservation to which the surface
droplets do not contribute in the thermodynamic limit. In
Fig. 3~a! the variableu runs tou50 which implies that for a
contact angleu.p/2 the surface droplets shrink away until
the wall eventually becomes dry. This happens, even if ini-
tially the droplet radius has exceeded the critical radius, be-
cause the latter grows more rapidly and eventually takes over
the actual radius. Foru,p/2 Fig. 3~c! applies with a stable
fixed pointu2, so that surface droplets witha.u1acr grow
until ~after merging together! the wall is completely wetted.
Since generallyu1.1, it may happen also in this case that an
initially supercritical droplet~with acr,a,u1acr) becomes
subcritical and eventually dies out.

In the Lifshitz-Slyozov theory of the infinite system@1# it
is easy to find the late-time distribution of bulk droplets. Its
derivation is closely related to the properties of the dynamics
near the fixed pointu0 of Fig. 3~b!. For surface droplets with
u.p/2 there is no fixed point which can stabilize an asymp-
totic droplet distribution. As already pointed out, for
u,p/2 all droplets inevitably merge together and eventually
form a homogeneous wetting layer. In the exceptional case
u5p/2 Fig. 3~b! applies so that the asymptotic droplet dis-
tribution is identical to that of the Lifshitz-Slyozov theory
@1#.

Within our model Eqs.~3!–~6! represent the exact result

for the growth rate of surface droplets with an arbitrary con-
tact angle. It implies that asymptotically the wall of the sys-
tem can become dry or covered by a layer of the condensate.
This is not in conflict with mass conservation since the bulk
acts as a reservoir which eats or feeds the surface droplets,
respectively. Although these droplets accordingly are un-
stable, we mention that in practice their lifetime may be very
large.

In comparing our results with reality one has to keep in
mind several limitations of our model. Most importantly, if
the system has a wetting transition, our theory does not apply
asymptotically close to the transition point since thereu50
so that the growth rate~3! diverges. This, however violates
our basic assumption that the growth process is slow com-
pared to the relaxation processes driven by surface tension.
The possible appearance of a dynamic contact angle, e.g.,
due to a surface roughness of the wall@6#, also has not been
taken into account.
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